DATASHEET

NI 9218

2 AI, 51.2 kS/s/ch Simultaneous, Universal Measurements

- DSUB or LEMO connectivity
- Built-in support for accelerometer, powered-sensor, fullbridge, and voltage measurements
- Support for half-bridge, quarter-bridge, 60 V, and current measurements with adapters
- 60 VDC, CAT I, channel-to-channel isolation

The NI 9218 is a 2-channel, universal C Series module designed for universal measurements in NI CompactDAQ and CompactRIO systems. The measurement type is selectable per channel, allowing you to perform different measurement types on each channel. The NI 9218 is ideal for creating universal test systems for automotive, off-highway, and data-logging systems.

NI 9218 Kit Contents

NI 9218 with DSUB

NI 9218 with LEMO

- NI 9218 with DSUB
- NI 9218 Getting Started Guide
- 2-Position Micro-Fit Plug and Crimp Terminal Kit
- NI 9218 with LEMO
- NI 9218 Getting Started Guide
- Power Connector

Screw-Terminal Adapter	NI 9982D (Cabled)	NI 9982L (Cabled)
	NI 9982F (Front-Mounted)	
±20 mA Adapter	NI 9983D (Cabled)	NI 9983L (Cabled)
	NI 9983F (Front-Mounted)	
±60 V Adapter	NI 9987D (Cabled)	NI 9987L (Cabled)
	NI 9987F (Front-Mounted)	
Half-Bridge Adapter	NI 9986D (Cabled)	NI 9986L (Cabled)
	NI 9986F (Front-Mounted)	
120 Ω Quarter-Bridge	NI 9984D (Cabled)	NI 9984L (Cabled)
Adapter	NI 9984F (Front-Mounted)	
350 Ω Quarter-Bridge	NI 9985D (Cabled)	NI 9985L (Cabled)
Adapter	NI 9985F (Front-Mounted)	
Custom Cables	NI 9988D Solder Cup	LEMO Plug
Pigtail I/O Cables	DSUB-to-Pigtail (1 m, 2 m)	LEMO-to-Pigtail (1 m, 2 m)
Power Connectors	2-Pos Micro Fit-to-Pigtail (1m)	_

NI C Series Overview

NI provides more than 100 C Series modules for measurement, control, and communication applications. C Series modules can connect to any sensor or bus and allow for high-accuracy measurements that meet the demands of advanced data acquisition and control applications.

- Measurement-specific signal conditioning that connects to an array of sensors and signals
- Isolation options such as bank-to-bank, channel-to-channel, and channel-to-earth ground
- -40 °C to 70 °C temperature range to meet a variety of application and environmental needs
- Hot-swappable

The majority of C Series modules are supported in both CompactRIO and CompactDAQ platforms and you can move modules from one platform to the other with no modification.

CompactRIO

CompactRIO combines an open-embedded architecture with small size, extreme ruggedness, and C Series modules in a platform powered by the NI LabVIEW reconfigurable I/O (RIO) architecture. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of available modular I/O to meet any embedded application requirement.

CompactDAQ

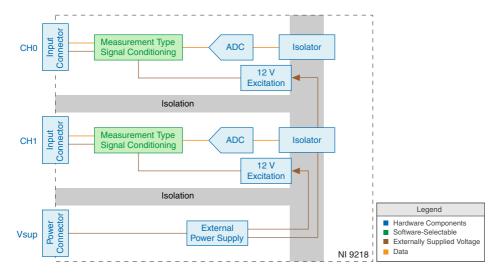
CompactDAO is a portable, rugged data acquisition platform that integrates connectivity, data acquisition, and signal conditioning into modular I/O for directly interfacing to any sensor or signal. Using CompactDAQ with LabVIEW, you can easily customize how you acquire, analyze, visualize, and manage your measurement data.

Software

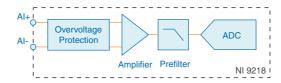
LabVIEW Professional Development System for Windows

- Use advanced software tools for large project development
- Generate code automatically using DAQ Assistant and Instrument I/O Assistant
- Use advanced measurement analysis and digital signal processing
- Take advantage of open connectivity with DLLs, ActiveX, and .NET objects
- Build DLLs, executables, and MSI installers

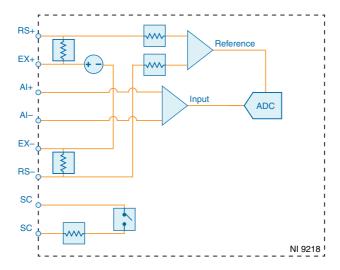
NI LabVIEW FPGA Module


- Design FPGA applications for NI RIO hardware
- Program with the same graphical environment used for desktop and real-time applications
- Execute control algorithms with loop rates up to 300 MHz
- Implement custom timing and triggering logic, digital protocols, and DSP algorithms
- Incorporate existing HDL code and third-party IP including Xilinx IP generator functions
- Purchase as part of the LabVIEW Embedded Control and Monitoring Suite

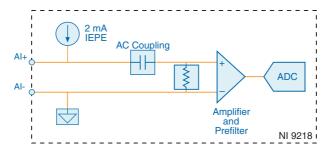
NI LabVIEW Real-Time Module


- Design deterministic real-time applications with LabVIEW graphical programming
- Download to dedicated NI or third-party hardware for reliable execution and a wide selection of I/O
- Take advantage of built-in PID control, signal processing, and analysis functions
- Automatically take advantage of multicore CPUs or set processor affinity manually
- Take advantage of real-time OS, development and debugging support, and board support
- Purchase individually or as part of a LabVIEW suite

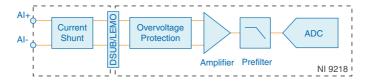
NI 9218 Circuitry


- Two 24-bit analog-to-digital converters (ADCs) simultaneously sample both AI channels.
- The NI 9218 provides channel-to-channel isolation.
- The NI 9218 reconfigures the signal conditioning for each measurement type.
- The NI 9218 provides excitation for IEPE and bridge completion measurement types.
- The NI 9218 can provide optional 12 V sensor excitation for ± 16 V, ± 65 mV, and ± 20 mA measurement types.

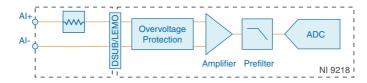
±16 V and ±65 mV Signal Conditioning


Input signals on each channel are buffered, conditioned, and then sampled by an ADC.

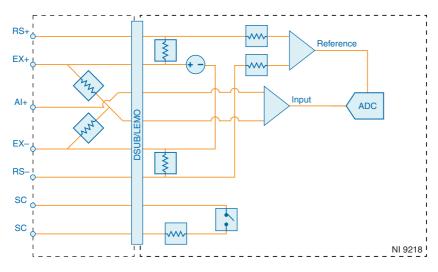
Full-Bridge Signal Conditioning


- The analog input connections sense then amplify the incoming analog signal.
- The excitation connections provide differential bridge-excitation voltage.
- Remote sensing continuously and automatically corrects for lead-wire induced excitation voltage loss when using the RS connections.
- Shunt calibration can be used to correct for lead-wire induced desensitization of the bridge.

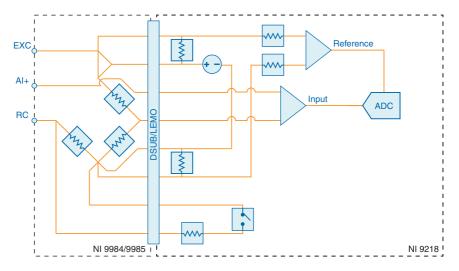
IEPE Signal Conditioning


- The incoming analog signal is referenced to an isolated ground.
- Each channel is configured for AC coupling with an IEPE current.
- Each channel provides a TEDS Class 1 interface.

±20 mA Signal Conditioning


The NI 9983 provides a current shunt for the incoming analog signal.

±60 V Signal Conditioning


The NI 9987 provides an attenuator for the incoming analog signal.

Half-Bridge Signal Conditioning

- The NI 9886 provides half bridge completion resistors for the incoming analog signal.
- You must connect AI+, EX+, and EX-.
- RS+ and RS- connections are optional.
- You do not need to connect the AI- signal because it is connected internally.

Quarter-Bridge Mode Conditioning

The NI 9984 and NI 9985 provide a quarter-bridge completion resistor and half-bridge completion resistors.

Filtering

The NI 9218 uses a combination of analog and digital filtering to provide an accurate representation of in-band signals while rejecting out-of-band signals. The filters discriminate between signals based on the frequency range, or bandwidth, of the signal. The three important bandwidths to consider are the passband, the stopband, and the alias-free bandwidth.

The NI 9218 represents signals within the passband, as quantified primarily by passband ripple and phase nonlinearity. All signals that appear in the alias-free bandwidth are either unaliased signals or signals that have been filtered by at least the amount of the stopband rejection.

Passband

The signals within the passband have frequency-dependent gain or attenuation. The small amount of variation in gain with respect to frequency is called the passband flatness. The digital filters of the NI 9218 adjust the frequency range of the passband to match the data rate. Therefore, the amount of gain or attenuation at a given frequency depends on the data rate.

Stopband

The filter significantly attenuates all signals above the stopband frequency. The primary goal of the filter is to prevent aliasing. Therefore, the stopband frequency scales precisely with the data rate. The stopband rejection is the minimum amount of attenuation applied by the filter to all signals with frequencies within the stopband.

Alias-Free Bandwidth

Any signal that appears in the alias-free bandwidth of the NI 9218 is not an aliased artifact of signals at a higher frequency. The alias-free bandwidth is defined by the ability of the filter to reject frequencies above the stopband frequency, and it is equal to the data rate minus the stopband frequency.

NI 9218 Specifications

The following specifications are typical for the range -40 °C to 70 °C unless otherwise noted.

Caution Do not operate the NI 9218 in a manner not specified in this document. Product misuse can result in a hazard. You can compromise the safety protection built into the product if the product is damaged in any way. If the product is damaged, return it to NI for repair.

General Characteristics

Number of channels	2 analog input channels
ADC resolution	24 bits
Type of ADC	Delta-Sigma
Sampling mode	Simultaneous
TEDS support	
NI 9218 with DSUB	IEEE 1451.4 TEDS Class 1
NI 9218 with LEMO	IEEE 1451.4 TEDS Class 1 and TEDS Class 2
Internal master timebase (f_M)	
Frequency	13.1072 MHz
Accuracy	100 ppm
F	igure 1. Data Rates

$f_{\mathbf{M}}$	÷ 256			
· IVI	 ,	n =	1, 2,	., 31

Data rate range (f_s) using internal	al master timebase	
Minimum	1.652 kS/s	
Maximum	51.2 kS/s	
Data rate range (f_s) using exter	nal master timebase	
Minimum	1 kS/s	
Maximum	51.367 kS/s	

Overvoltage protection

Pin 2 to Pin 3	-20 V to 30 V
Any other pin-to-pin	±30 V

Note Be aware when processing acquisitions that include full-scale data. Full-scale data readings indicate that an over-range has occurred in the analog front-end.

±16 V Characteristics

Input coupling	DC	
Measurement range		
Typical	±16.3 V	
Minimum	±16.0 V	

Table 1. ±16 V Accuracy

Measurement Conditions		Gain Error	Offset Error
Calibrated	Typical, 23 °C ±5 °C	0.08%	0.70 mV
	Maximum, -40 °C to 70 °C	0.20%	9 mV
Uncalibrated ¹	Typical, 23 °C ±5 °C	1.2%	50 mV
	Maximum, -40 °C to 70 °C	2.0%	70 mV

Gain drift	15 ppm/°C
Offset drift	32 μV/°C
Integral non-linearity (INL)	150 μV
Input noise, RMS	
51.2 kS/s	$128 \mu V$
25.6 kS/s	$107 \mu V$
4.27 kS/s	81 μV
Input impedance	390 kΩ
Input bandwidth, -3 dB	$0.49 f_s$
Flatness, DC-20 kHz, referred to 1 kHz	
Typical	±30 mdB
Maximum	±50 mdB

¹ Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Phase non-linearity, DC-20 kHz	0.30°
Input delay	$(40 + [5/512])/f_s + 5.3 \mu s$
Stopband	
Frequency	$0.55f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64 f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-100 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, 1 Vrms	101 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz normal mode, full-scale aggressor	-109 dBFS
CMRR, 60 Hz 1 Vrms-to-earth ground	-120 dBFS
Powered sensor 12 V excitation	
Voltage level	12 V ±5%
Voltage noise, RMS 100 kHz bandwidth	1 mV
Output current	
Typical	50.5 mA
Minimum	46.5 mA
Settling Time (to 1 % of final value after enabling)	200 ms

Related Information

Vsup Power Requirements on page 25

±65 mV Characteristics

Input coupling	DC

Measurement range

Typical	73.5 mV
Minimum	72 mV

Table 2. ±65 mV Accuracy

Measurement Conditions		Gain Error	Offset Error
Calibrated	Typical, 23 °C ±5 °C	0.13%	8 μV
	Maximum, -40 °C to 70 °C	0.20%	130 μV
Uncalibrated ²	Typical, 23 °C ±5 °C	1.2%	300 μV
	Maximum, -40 °C to 70 °C	2.0%	450 μV

Gain drift	10 ppm/°C
Offset drift	320 nV/°C
Input noise, RMS	
51.2 kS/s	4.3 μV
25.6 kS/s	3 μV
4.27 kS/s	1.3 μV
Input impedance	>10 MΩ
Input bandwidth, -3 dB	$0.49 f_s$
Flatness, DC-20 kHz, referred to 1 kHz	
Typical	-40 mdB to 0 mdB
Maximum	-150 mdB to 20 mdB
Phase non-linearity, DC-20 kHz	0.2°
Input delay	$(40 + [5/512])/f_s + 3.9 \mu s$
Stopband	
Frequency	$0.55 f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB

Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-95 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, -1 dBFS	95 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz normal mode, full-scale aggressor	-109 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-133 dBFS
Powered sensor 12 V excitation	
Voltage level	12 V ±5%
Voltage noise, RMS 100 kHz bandwidth	1 mV
Output current	
Typical	50.5 mA
Minimum	46.5 mA
Settling Time (to 1% of final value after enabling)	200 ms

Related Information

Vsup Power Requirements on page 25

Full-Bridge Characteristics

Input coupling	DC	
Measurement range		
Typical	22.1 mV/V	
Minimum	21.7 mV/V	

Table 3. Full-Bridge Accuracy

				Offset	
Measurement Conditions		Gain	Without Offset Null	≤ 90 days, ±5 °C from Offset Null	
Calibrated	3.3 V Excitation	Typical, 23 °C ±5 °C	0.10%	2.4 μV/V	0.5 μV/V
		Maximum -40 °C to 70 °C	0.20%	40 μV/V	5 μV/V
	2 V Excitation	Typical, 23 °C ±5 °C	0.10%	30 μV /V	0.8 μV/V
		Maximum -40 °C to 70 °C	0.20%	87 μV/V	8 μV/V
Uncalibrated ³	3.3 V Excitation	Typical, 23 °C ±5 °C	1.2%	100 μV/V	_
		Maximum -40 °C to 70 °C	2.0%	150 μV/V	_
	2 V Excitation	Typical, 23 °C ±5 °C	1.2%	120 μV/V	_
		Maximum -40 °C to 70 °C	2.0%	200 μV/V	_

Gain drift	10 ppm/°C
Offset drift	
3.3 V excitation	100 nV/V/°C
2 V excitation	160 nV/V/°C

Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Table 4. Input Noise, RMS

Excitation Voltage			
	4.27 kS/s	25.6 kS/s	51.2 kS/s
3.3 V	0.4 μV/V	1.0 μV/V	1.3 μV/V
2 V	$0.7~\mu V/V$	1.6 μV/V	2.1 μV/V
Differential input impedance	>10 MΩ	2	
Input bandwidth, -3 dB	$0.49 f_s$		
Flatness, DC-20 kHz, referred to 1 k	Hz		
Typical	-40 mdE	B to 0 mdB	
Maximum	-150 md	B to 20 mdB	
Phase non-linearity, DC-20 kHz	0.2°		
Input delay	(40 + [5]	$/512$])/ $f_s + 3.9 \mu s$	
Stopband			
Frequency	$0.55 f_s$		

Maximum	-150 mdB to 20 mdB
Phase non-linearity, DC-20 kHz	0.2°
Input delay	$(40 + [5/512])/f_s + 3.9 \mu\text{s}$
Stopband	
Frequency	$0.55f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64 f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-95 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, -1 dBFS	95 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz, normal mode, full-scale aggressor	-109 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-133 dBFS
Shunt calibration accuracy	$50~k\Omega \pm 0.2\%$
Strain excitation voltage	
2 V level	2 V ±3%
3.3 V level	3.3 V ±3%

Output current

2 V level	17.8 mA	
3.3 V level	10.1 mA	

IEPE Characteristics

Input coupling	AC	
Measurement range		
Typical	5.33 V	
Minimum	5.0 V	

Table 5. IEPE Accuracy

Measurement Conditions		Gain Error
Calibrated	Typical, 23 °C ±5 °C	0.20% (0.017 dB)
	Maximum, -40 °C to 70 °C	0.40% (0.034 dB)
Uncalibrated ⁴	Typical, 23 °C ±5 °C	1.7% (0.146 dB)
	Maximum, -40 °C to 70 °C	2.0% (0.172 dB)

Residual DC offset	<150 mV
Gain drift	25 ppm/°C
Input noise, RMS	
51.2 kS/s	50 μV
25.6 kS/s	38 μV
4.27 kS/s	25 μV
Input impedance	$300~\mathrm{k}\Omega$
Input bandwidth, -3 dB	$0.49 f_s$
Flatness, 10 Hz-20 kHz, referred to 1 kHz	
Typical	±25 mdB
Maximum	$\pm 40 \text{ mdB}$
Phase non-linearity, 100 Hz-20 kHz	0.25°
AC cutoff frequency, -3 dB	0.5 Hz
Input delay	$(40 + [5/512])/f_s + 3.9 \mu\text{s}$

⁴ Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Stopband

1	
Frequency	$0.55 f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-102 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, 1 Vrms	107 dB
Intermodulation Distortion (IMD), (CCIF 11 kHz/12 kHz)	-97 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz normal mode, full-scale aggressor	-109 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-122 dBFS
IEPE excitation current	
Typical	2.2 mA
Minimum	2.1 mA
Compliance voltage	
Typical	20.5 V
Minimum	19.5 V

If you are using an IEPE sensor, use the following equation to ensure that your configuration meets the IEPE compliance voltage range. This equation must resolve to 0 to 19.5.

Figure 2. IEPE Compliance Voltage Equation

$$V_{\rm bias} \pm V_{\rm full-scale}$$

where

 $V_{\rm bias}$ is the bias voltage of the IEPE sensor

 $V_{\rm full-scale}$ is the full-scale voltage of the IEPE sensor

±20 mA Characteristics

The ± 20 mA measurement type requires the NI 9983 measurement-specific adapter. The characteristics are for the NI 9218 used in conjunction with the NI 9983.

Input coupling	DC	
Measurement range		
Typical	24.4 mA	
Minimum	23.0 mA	

Table 6. ±20 mA Accuracy

Measurement Conditions		Gain Error	Offset Error
Calibrated	Calibrated Typical, 23 °C ±5 °C		5 μΑ
Maximum, -40 °C to 70 °C		0.60%	42 μΑ
Uncalibrated ⁵	Typical, 23 °C ±5 °C	1.5%	100 μΑ
Maximum, -40 °C to 70 °C		2.0%	150 μΑ

Gain drift	35 ppm/°C
Offset drift	105 nA/°C
Shunt resistance	3.01 Ω
Input noise, RMS	
51.2 kS/s	1.4 μΑ
25.6 kS/s	1.0 μΑ
4.27 kS/s	0.5 μΑ
Input impedance	$45~\Omega \pm 30\%$
Input bandwidth, -3 dB	$0.49 f_s$
Input delay	$(40 + [5/512])/f_s + 3.9 \mu s$
Stopband	
Frequency	$0.55 f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64f_s$

Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz normal mode, full-scale aggressor	-109 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-99 dBFS
Powered sensor 12 V excitation	
Voltage level	12 V ±5%
Voltage noise, RMS, 100 kHz bandwidth	1 mV
Output current	
Typical	50.5 mA
Minimum	46.5 mA
Settling Time (to 1% of final value after enabling)	200 ms

Related Information

Vsup Power Requirements on page 25

±60 V Characteristics

The ± 60 V measurement type requires the NI 9987 measurement-specific adapter. The characteristics are for the NI 9218 used in conjunction with the NI 9987.

Input coupling	DC	
Measurement range		
Typical	±62.1 V	
Minimum	±60 V	

Table 7. ±60 V Accuracy

Measurement Conditions		Gain Error	Offset Error
Calibrated Typical, 23 °C ±5 °C		0.3%	3 mV
	Maximum, -40 °C to 70 °C	0.6%	40 mV

Table 7. ±60 V Accuracy (Continued)

Measurement Conditions		Gain Error	Offset Error
Uncalibrated ⁶ Typical, 23 °C ±5 °C		1.3%	200 mV
	Maximum, -40 °C to 70 °C	2.0%	300 mV

Gain drift	30 ppm/°C
Offset drift	120 μV/°C
Integral non-linearity (INL)	15 mV
Input noise, RMS	
51.2 kS/s	500 μV
25.6 kS/s	420 μV
4.27 kS/s	320 μV
Input impedance	1.49 ΜΩ
Input bandwidth, -3 dB	
NI 9987D/9987L	Lesser of 2.8 kHz or $0.49 f_s$
NI 9987F	Lesser of 7 kHz or $0.49 f_s$
Flatness, DC to 500 Hz, referred to DC, $f_s \ge 1.652 \text{ kS/s}$	0.2 dB
Input delay	
NI 9987D	$(40 + [5/512])/f_s + 58.7 \mu\text{s}$
NI 9987L	$(40 + [5/512])/f_s + 57.9 \mu\text{s}$
NI 9987F	$(40 + [5/512])/f_s + 27.2 \mu\text{s}$
Stopband	
Frequency	$0.55 f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB

⁶ Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Total Harmonic Distortion (THD), 8 Vrms, 500 Hz	-80 dBc
Spurious-Free Dynamic Range (SFDR), 8 Vrms, 500 Hz	-80 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz, normal mode, full-scale aggressor	-70 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-89 dBFS

Half-Bridge Mode Characteristics

The half-bridge measurement type requires the NI 9986 measurement-specific adapter. The characteristics are for the NI 9218 used in conjunction with the NI 9986.

Input coupling	DC
Measurement range	
Typical	22.1 mV/V
Minimum	21.7 mV/V

Table 8. Half-Bridge Accuracy

				Offs	set
Measurement Conditions		Gain	Without Offset Null	≤ 90 days, ±5 °C from Offset Null	
Calibrated	3.3 V and 2 V excitation	Typical 23 °C ±5 °C	0.10%	700 μV/V	45 μV/V
		Maximum -40 °C to 70 °C	0.20%	1000 μV/V	90 μV/V

Table 8. Half-Bridge Accuracy (Continued)

				Offs	set
Measurement Conditions		Gain	Without Offset Null	≤ 90 days, ±5 °C from Offset Null	
Uncalibrated ⁷	3.3 V and 2 V excitation	Typical 23 °C ±5 °C	1.2%	800 μV/V	_
		Maximum -40 °C to 70 °C	2.0%	1.1 mV/V	_

Table 9. Input Noise, RMS

Excitation Voltage	Sample Rate		
	4.27 kS/s	25.6 kS/s	51.2 kS/s
3.3 V	0.4 μV/V	1.0 μV/V	1.3 μV/V
2 V	0.7 μV/V	1.6 μV/V	2.2 μV/V

Input bandwidth, -3 dB $0.49 f_s$ Flatness, DC-20 kHz, referred to 1 kHz -40 mdB to 0 mdB **Typical** Maximum -150 mdB to 20 mdB Phase non-linearity, DC-20 kHz 0.2° Input delay $(40 + [5/512])/f_s + 3.9 \mu s$ Stopband Frequency $0.55 f_{\rm s}$ 100 dB Rejection Alias-free bandwidth $0.45 f_{\rm s}$ Oversample rate $64 f_{\rm s}$

⁷ Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-95 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, -1 dBFS	95 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz, normal mode, full-scale aggressor	-85 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-73 dBFS
Strain excitation voltage	
2 V level	2 V ±3%
3.3 V level	3.3 V ±3%
Output current	
2 V level	17.8 mA
3.3 V level	10.1 mA

Quarter-Bridge Characteristics

The quarter-bridge measurement type requires the NI 9984 or NI 9985 measurement-specific adapter. The characteristics are for the NI 9218 used in conjunction with the NI 9984 or the NI 9985.

Input coupling	DC	
Measurement range		
Typical	22.1 mV/V	
Minimum	21.7 mV/V	

Table 10. Quarter-Bridge Accuracy

				Offs	set
Measurement Conditions		Gain	Without Offset Null	≤ 90 days, ±5 °C from Offset Null	
Calibrated	3.3 V and 2 V excitation	Typical 23 °C ±5 °C	0.10%	700 μV/V	45 μV/V
		Maximum -40 °C to 70 °C	0.20%	1000 μV/V	90 μV/V
Uncalibrated ⁸	3.3 V and 2 V excitation	Typical 23 °C ±5 °C	1.2%	800 μV/V	_
		Maximum -40 °C to 70 °C	2.0%	1.1 mV/V	_

Gain drift	10 ppm/°C
Offset drift	1.3 μV/V/°C
Quarter-bridge completion resista	ance
NI 9984	120 Ω
NI 9985	350 Ω

Table 11. Input Noise, RMS

Excitation Voltage	Sample Rate		
	4.27 kS/s	25.6 kS/s	51.2 kS/s
350 Ω, 3.3 V	0.4 μV/V	1.0 μV/V	1.3 μV/V
120 Ω, 2 V	0.7 μV/V	1.6 μV/V	2.2 μV/V

Input bandwidth, -3dB	$0.49 f_s$
Flatness, DC-20 kHz, referred to 1 kHz	
Typical	-40 mdB to 0 mdB
Maximum	-150 mdB to 20 mdB
Phase non-linearity, DC-20 kHz	0.2°

⁸ Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

	(40 + 15/512))/6 + 2.0
Input delay	$(40 + [5/512])/f_s + 3.9 \mu s$
Stopband	
Frequency	$0.55 f_s$
Rejection	100 dB
Alias-free bandwidth	$0.45 f_s$
Oversample rate	$64f_s$
Rejection at oversample rate $(f_s = 51.2 \text{ kS/s})$	100 dB
Total Harmonic Distortion (THD), 1 kHz, -1 dBFS	-95 dBc
Spurious-Free Dynamic Range (SFDR), 1 kHz, -1 dBFS	95 dB
Crosstalk	
60 Hz, 1 Vrms, common mode	-120 dBFS
1 kHz, normal mode, full-scale aggressor	-85 dBFS
CMRR, 60 Hz, 1 Vrms-to-earth ground	-73 dBFS
Strain excitation voltage	
2 V level	2 V ±3%
3.3 V level	3.3 V ±3%
Output current	
2 V level	17.8 mA
3.3 V level	10.1 mA
Power Requirements	
Maximum power consumption from chassis	
Active mode	900 mW maximum
Sleep mode	500 μW maximum
Maximum thermal dissipation, from -40 °C to	to 70 °C
Active mode	1.5 W maximum
Sleep mode	550 mW maximum

Vsup input voltage range	9 V to 30 V

Maximum power consumption from Vsup

Active mode	2 W maximum
Sleep mode	400 mW maximum

Physical Characteristics

If you need to clean the module, wipe it with a dry towel.

Tip For two-dimensional drawings and three-dimensional models of the C Series module and connectors, visit ni.com/dimensions and search by module number.

Weight	
NI 9218 with DSUB	151 g (5.33 oz)
NI 9218 with LEMO	165 g (5.82 oz)
NI 998x Physical Characteristic	es
Screw-terminal wiring	
Gauge	0.05 mm ² (30 AWG) to 1.31 mm ² (16 AWG) copper conductor wire
Wire strip length	6 mm (0.236 in.) of insulation stripped from the end
Temperature rating	80 °C minimum
Wires per screw terminal	One or two wires per screw terminal
Ferrules, single wire	0.25 mm ² (20 AWG) to 0.52 mm ² (24 AWG)
Torque for screw terminals	0.2 N · m to 0.25 N · m (1.77 lb · in. to 2.21 lb · in.)
Wire securement	
NI 998xD, NI 998xL securement type	Three collets provided (ranging from 2.2 mm to 5.2 mm in diameter)
Torque for collet nut	1.5 N · m (13.3 lb · in.)
NI 998xF securement type	Zip tie provided
NI 998xD and NI 998xF connector secureme	nt
Securement type	Jackscrews provided
Jackscrew torque	0.4 N · m (3.6 in · lb)
Weight	

142 g (5.0 oz) with cable

34 g (1.2 oz)

NI 998xD, NI 998xL

NI 998xF

NI 9218 with LEMO Safety Voltages

Connect only voltages that are within the following limits:

Maximum voltage, ±30 V

from any pin to any pin on a single connector⁹

Isolation

Channel-to-channel, channel-to-Vsup, channel-to-earth, Vsup-to-earth (up to 5,000 m)¹⁰

	* * * * * * * * * * * * * * * * * * * *
Continuous	60 VDC, Measurement Category I
Withstand	1,000 Vrms, verified by a 5 s dielectric withstand test

Caution Any excitation output voltage to earth ground must remain below 60 VDC for each channel. To determine excitation output voltage to earth ground for a channel, add the maximum excitation voltage to the maximum potential on pin 3. The maximum excitation voltages are 2 V +3% and 3.3 V +3% for the bridge excitations, 12 V +5% for the +12 V excitation, and 22 V for the IEPE excitation.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as *MAINS* voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not connect the NI 9218 to signals or use for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

NI 9218 with DSUB Safety Voltages

Connect only voltages that are within the following limits:

Maximum voltage, $\pm 30~{\rm V}$ from any pin to any pin on a single connector 11

⁹ The maximum voltage between pin 2 and pin 3 on a single connector is -20 V to +30 V.

Must use crimp contact LEMO plug (784162-01) to maintain these ratings. Ratings are invalidated if solder version is used.

¹¹ The maximum voltage between pin 2 and pin 3 on a single connector is -20 V to +30 V.

Isolation

Channel-to-channel, channel-to-Vsup inp	outs (up to 5,000 m)
Continuous	60 VDC, Measurement Category I
Withstand	1,000 Vrms, verified by a 5 s dielectric withstand test
Channel-to-earth ground (up to 3,000 m)	
Continuous	60 VDC, Measurement Category I
Withstand	1,000 Vrms, verified by a 5 s dielectric withstand test
Channel-to-earth ground (up to 5,000 m)	
Continuous	60 VDC, Measurement Category I
Withstand	860 Vrms
Vsup inputs-to-earth ground (up to 5,000	m)
Continuous	60 VDC, Measurement Category I
Withstand	1,000 Vrms, verified by a 5 s dielectric withstand test

Caution Any excitation output voltage to earth ground must remain below 60 VDC for each channel. To determine excitation output voltage to earth ground for a channel, add the maximum excitation voltage to the maximum potential on pin 3. The maximum excitation voltages are 2 V +3% and 3.3 V +3% for the bridge excitations, 12 V +5% for the +12 V excitation, and 22 V for the IEPE excitation.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated lowvoltage sources, and electronics.

Caution Do not connect the NI 9218 to signals or use for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nA IIC T4
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc

Safety and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1
- EN 60079-0:2012. EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 5, UL 60079-15; Ed 3
- CSA 60079-0:2011, CSA 60079-15:2012

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use; for radio equipment; and for telecommunication terminal equipment:

- EN 61326-1 (IEC 61326-1): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 94/9/EC; Potentially Explosive Atmospheres (ATEX)

Shock and Vibration

To meet these specifications, you must panel mount the system.

Operating vibration	
Random (IEC 60068-2-64)	$5 g_{rms}$, $10 Hz$ to $500 Hz$
Sinusoidal (IEC 60068-2-6)	5 g, 10 Hz to 500 Hz
Operating shock (IEC 60068-2-27)	30 g, 11 ms half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Operating temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 70 °C
Storage temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 85 °C
Ingress protection	IP40
Operating humidity (IEC 60068-2-78)	10% RH to 90% RH, noncondensing
Storage humidity (IEC 60068-2-78)	5% RH to 95% RH, noncondensing

Pollution Degree	2	
Maximum altitude	5,000 m	
Indoor use only.		
NI 998x Environmental		

Environmental Management

Operating temperature (IEC 60068-2-1) -40 °C to 70 °C

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

(P) (P) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Calibration

You can obtain the calibration certificate and information about calibration services for the NI 9218 at ni com/calibration

Calibration interval	2 years
----------------------	---------

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.